Global Error Bound Estimation for the Generalized Nonlinear Complementarity Problem over a Closed Convex Cone
نویسندگان
چکیده
The global error bound estimation for the generalized nonlinear complementarity problem over a closed convex cone GNCP is considered. To obtain a global error bound for the GNCP, we first develop an equivalent reformulation of the problem. Based on this, a global error bound for the GNCP is established. The results obtained in this paper can be taken as an extension of previously known results.
منابع مشابه
A New Type Algorithm for the Generalized Linear Complementarity Problem Over a Polyhedral Cone In Engineering and Equilibrium Modeling
In this paper, we consider a new type algorithm for the generalized linear complementarity problem over a polyhedral cone in engineering and economic equilibrium modeling(GLCP). To this end, we first develop some equivalent reformulations of the problem under milder conditions, and then an easily computable global error bound for the GLCP is established, which can be viewed as extensions of pre...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملA full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem
A full Nesterov-Todd (NT) step infeasible interior-point algorithm is proposed for solving monotone linear complementarity problems over symmetric cones by using Euclidean Jordan algebra. Two types of full NT-steps are used, feasibility steps and centering steps. The algorithm starts from strictly feasible iterates of a perturbed problem, and, using the central path and feasi...
متن کاملGeneralized Linear Complementarityproblemsm
It has been shown by Lemke that if a matrix is copositive plus on IR n , then feasibility of the corresponding Linear Complementarity Problem implies solvability. In this article we show, under suitable conditions, that feasibility of a Generalized Linear Complementarity Problem (i.e., deened over a more general closed convex cone in a real Hilbert Space) implies solvability whenever the operat...
متن کاملAn improved infeasible interior-point method for symmetric cone linear complementarity problem
We present an improved version of a full Nesterov-Todd step infeasible interior-point method for linear complementarityproblem over symmetric cone (Bull. Iranian Math. Soc., 40(3), 541-564, (2014)). In the earlier version, each iteration consisted of one so-called feasibility step and a few -at most three - centering steps. Here, each iteration consists of only a feasibility step. Thus, the new...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012